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1. PROPUESTA CIENTÍFICA - SCIENTIFIC PROPOSAL 
 
1.1. Background, Current State-Of-The-Art and Justification. 
Cognition is context-sensitive, as the same sensory information is processed differently 
depending on its context (e.g., on its probabilistic association with goal-directed actions and 
their outcomes). However, the concept of context in studies of higher-order cognition is often 
simplified to nominal stimulus categories (like comparing a target with a distractor). The main 
objective of this proposal is to quantify contextual information for a more accurate modeling 
of cognitive demands. There can be many benefits in quantifying contextual information in 
tasks of cognitive control. First, this can provide novel insights into the nature of cognitive 
control. Second, it can help operationalize cognitive control as simple probability models offer 
a tool for quantifying contextual information at different levels in the putative neural hierarchy 
of cognitive control, and these values can then be entered as regressors to describe and 
predict rapidly changing trial-by-trial neural dynamics. In the following, I briefly describe the 
logic of using context-sensitive measures of cognitive control and highlight recent studies 
that do so using information theory metrics and Bayesian statistics under the Bayesian brain 
hypothesis (Barceló & Cooper, 2018a,b; Friston, 2010; Parr et al., 2019). 
 
A recent research hypothesis states that the dynamic interaction between exogenous and 
endogenous sources of information underwriting cognitive control can be defined in 
probabilistic terms, with formal models of information processing based on information theory 
and Bayesian probability models (Barceló, Bestmann and Yu, 2012; Koechlin and 
Summerfield, 2007; Friston, 2005, 2010). These models allow us to accurately quantify the 
cognitive demands in a task, as well as to model the behavioral and brain responses 
associated with different experimental conditions. Our recent findings are consistent with this 
hypothesis about the probabilistic nature of the relationship between exogenous and 
endogenous variables responsible for cognitive control (Barceló et al., 2008; Barceló and 
Cooper, 2018; Periáñez and Barceló, 2009). These works suggest that the brain acquires 
and maintains an approximate representation of the uncertainty associated with the stimuli 
and responses of the experimental task (the “task-set”), and that this uncertainty influences 
both the allocation of attentional resources, as well as other processes such as working 
memory, learning and decision-making (e.g., Friston, 2005; Glimcher, 2004; Yu, 2007). This 
recent hypothesis has renewed interest in knowing the role played by the processing of 
uncertainty in cognitive control, using different formalisms derived from the Theory of 
Information and Bayesian Probability (Koechlin and Summerfield, 2007; Barceló, Bestmann 
and Yu, 2012; Parr et al., 2019). These findings suggest an amazing capacity of the human 
brain for probabilistic inference, and can help describe and predict behavioral and brain 
responses in tasks of cognitive control (Miller, 1956; Sutton et al., 1965). These probabilistic 

AVISO IMPORTANTE - La memoria no podrá exceder de 20 páginas. Para rellenar correctamente esta 
memoria, lea detenidamente las instrucciones disponibles en la web de la convocatoria. Es obligatorio 

rellenarla en inglés si se solicita más de 100.000 €. 
 

IMPORTANT – The research proposal cannot exceed 20 pages. Instructions to fill this document are 
available in the website. If the project cost exceeds 100.000 €, this document must be filled in English. 

Convocatoria 2019 - «Proyectos de I+D+i»  



	

2 de 20 

models can help design better cognitive tasks and offer a frame of reference to compare the 
results obtained across different experimental paradigms, as well as between individuals of 
different age and condition (Barceló et al., 2008; Barceló and Knight, 2007). The calibration 
of neuropsychological tasks using a universal scale, independent of the sensory and motor 
parameters specific to each task, would allow us to reach more generalizable conclusions 
and compare the results from different neuropsychological tests (Miller, 1956; Barceló et al., 
2008). The mathematical formalization of the concept of cognitive control can therefore serve 
not only to describe more precisely the spatio-temporal neural dynamics of executive control, 
but also to improve the neuropsychological assessment of cognitive deficits associated with 
age and those caused by brain injuries (Barceló & Knight, 2007; Nyhus & Barceló, 2009). 
 
Our research group has pioneered the electrophysiological study of cognitive control through 
“task switching” paradigms inspired by the Wisconsin card sorting test (WCST), a classic 
neuropsychological test of prefrontal executive function (Miller, 2000). In the last twenty 
years, we have developed a modified adaptation of the WCST (known as the Madrid Card 
Sorting Test, MCST; Barceló, 2003), which allows the simultaneous recording of behavioral 
and electroencephalographic (EEG) responses (Barceló, 1999, 2001; Barceló et al., 1997, 
2000, 2002a, 2002b, 2003, 2006; see Figure 1). This adaptation of the original WCST offers 
several advantages to explore the interaction between the neural mechanisms of exogenous 
(e.g., “bottom-up” responses to distractors) and endogenous (e.g., “top-down” control of cued 
attention) executive attention. The MCST adaptation offers the excellent temporal resolution 
of electroencephalographic (EEG) recordings, which combined with our modeling work has 
shown that the activation of the frontoparietal network involved in cognitive control is a 
function of the informative content (entropy) of the sensory stimulus for response selection, 
over and above the novelty, mean probability of occurrence, or the instructed task relevant 
(i.e., target) or irrelevant (i.e., distracter) nominal labels given to those stimuli (cf., Barceló et 
al., 2008; Barceló & Cooper, 2018b; Nyhus and Barceló, 2009). These findings have led us 
to reconceptualize the functional significance of the endogenous P300 cortical potential 
(Donchin and Coles, 1988), since at least one of its elements (traditionally known as the 
“P3a”, or “novelty P3” component), seems to index phasic activation across the frontoparietal 
network for cognitive control during the memory updating of the context of stimulus-response 
associations necessary for the selection of responses in a proactive or anticipatory fashion 
(Barceló et al., 2002, 2006; Barceló & Cooper, 2018a,b). The explanation of these previous 
results has led us to formalize a computational model that links the information content of 
stimuli with the allocation of resources in working memory (cf., Barceló and Nyhus, 2009; 
Miller, 1956). To date, this model has allowed us to examine individual differences in EEG 
activation across frontoparietal scalp regions responsible for implementing task-switching, 
and have begun to describe them formally in probabilistic terms (Adrover-Roig and Barceló, 
2010, cf., Barceló & Cooper, 2018a,b). 
 
 

Figure 1. MCST protocol. (a) Trial sequence, (b) task cues and target card displays, y (c) Event-related potentials (ERPs) 
obtained to contextual cues and target cards along one MCST classification series (cf., Nyhus y Barceló, 2009). 
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The purpose of this proposal is to advance the mathematical formalization of a computational 
model of cognitive control initiated with a previous project (ref. PSI2013-44760-R), and verify 
its validity and generality with new behavioral and electroencephalographic (EEG) evidence 
obtained with two classic neuropsychological tasks of cognitive control (i.e., our MCST 
adaptation and a task-switching paradigm). In addition, this project involves the empirical 
examination of the modeling work in two samples of healthy young adults (20-35 years; N = 
60) and older people (60-85 years; N = 60), all of which will be classified according to their 
scores ("high" or "low") in a battery of neuropsychological tests of cognitive control following 
the procedure described in Adrover-Roig and Barceló (2010). The ultimate purpose of this 
project is to improve the neuropsychological diagnosis of cognitive deficits associated with 
age and, in particular, to verify the extent to which these are comparable with deficits caused 
by lesions in the prefrontal cortex (e.g., hypothesis of frontal aging; West, 1996, 2005). 
 
Probabilistic models of cognitive control 
The computational work developed in our earlier MICINN projects (refs. SEJ2007-61728 and 
PSI2013-44760-R), combines an integrative model of prefrontal function (Miller, 2000), with a 
formal model of cognitive control based on Information Theory (see Figures 2 & 3). However, 
in recent years, formalisms based on Bayesian models of probability have also been used for 
the same purpose (Baldi, 2002, 2005; Parr et al., 2019). The present project aims to develop 
further this model using both the formalisms of the Theory of the information, as well as the 
Bayesian theory of probability (Barceló, Bestmann and Yu, 2012). For this purpose we take 
as a starting point published works (Barceló et al., 2008; Barceló & Cooper, 2018a), as well 
as the current probabilistic approach to the human mind and brain (Behrens et al., 2007; 
Friston, 2005; Mars et al., 2008; Yu et al., 2009). The model of Koechlin and Summerfield 
(2007) is briefly outlined below, and the relationship between the concepts of information 
theory and those used in Bayesian probability models is explained further below. 
 

 Koechlin & Summerfield’s (2007) 
model. These authors used concepts 
from Information Theory to describe 
and explain the functional architecture 
of executive control in the lateral 
prefrontal cortex. The model is based 
on functional magnetic resonance data, 
and one of its most important tenets is 
that the selection of actions is guided by 
control signals organized hierarchically 
along an antero-posterior axis within the 
prefrontal cortex. However, today there 
are hardly any studies that have tried to 
validate this model using EEG activity in 
humans (cf., Barceló et al., 2008; 
Barceló & Knight, 2007). 
       Adopting formalisms from the 
Theory of Information such as other 
authors did before (Miller, 1956), the 
model in Fig. 2 computes the total 
amount of information H(a) necessary 
to select an action 'a' associated with a 
stimulus 's' by estimating the sum of 
two terms (Fig. 1 and Box 1, Ec. 1): (i) 

the 'mutual information' I(s, a) between the stimulus 's' and the 'a' action; and (ii) the 
remaining portion of information Q (a | s) (that is, the ‘conditional information’ necessary to 
select action ‘a’ but that is independent from stimulus ‘s’). Koechlin refers to I(s, a) as 
‘sensorimotor control’ and describes the term Q (a | s) as ‘cognitive control’. The distinction 
between sensorimotor and cognitive control is compatible with most theories that dissociate 
two control modes, one exogenous and controlled by the data, and another endogenous and 
controlled by the goals. Koechlin and Summerfield (2007) similarly explain the difference 

Figure 2. Probabilistic model of cognitive control (adapted from Koechlin 
and Summerfield, 2007). 
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between higher levels in the control hierarchy: contextual and episodic. Recent neuroimaging 
evidence provides support for this hierarchical model (e.g., Badre & D’Esposito, 2009). 

 
By combining the models of Miller (2000) and Koechlin and Summerfield (2007) we can get 
some clues for understanding cognitive control across many tasks such as the WCST and 
task-switching paradigms. According to our estimates of transmitted information between 
sensory and motor aspects in Figure 3, the amount of information H(rj) necessary to select 
the correct response r2 to a card with 'a blue star', s3, corresponds to the sum of: (i) the 
information for the 'sensorimotor control' provided by stimulus s3 on response r2 (Box 1, Ec. 
2), which depends on the set of all stimuli { S } and responses { R } present in the task, as 
well as their probabilistic dependencies (Ec. 3), and (ii) residual control processes (Ec. 4) 
that need to be invoked when the sensorimotor control (that is, the current stimulus-response 
mappings) are not enough to produce adaptive behavior (Nyhus & Barceló, 2009). In other 
words, some additional control is needed to process contextual signals, c (error feedback, or 
switch task cues), which prompt for a change in higher order units of the task set, ts (Ec . 4). 
 
 

 

 
This formal model allows us to examine relevant hypotheses such as, for example, whether 
the memory demands linked to the processing of a sensory stimulus, and its associated brain 
activations, depend on control processes at low (bottom-up), rather than at high order (top-
down) levels in the hierarchy of control. For example, switch and repetition cues in the MCST 
transmit similar amounts of information for the low-order ‘sensorimotor control’ of their 
associated ‘nogo’ responses. However, switch cues also transmit additional information at 
high-order levels in the hierarchy prompting for a switch in the perception-action rules. This 
notion is illustrated in Figure 4, where a switch cue with a low probability of occurrence (P = 
0.05) conveys the same amount of information for the selection of its 'nogo' response than a 
repetition cue with a high probability of occurrence (P = 0.45). On the contrary, it becomes 
clear that the cognitive demands associated with a switch cue increase depending on the 
number of latent higher order units (i.e., task rules) kept active in working memory (Fig. 4, 
Ec. 4). The greater informative content of the cues associated with a greater number of rules 
entails an increase in the response costs and in the amplitude of P3a/novelty P3 to those 
cues, in tasks where two or three rules are handled, compared to single tasks with only one 
task rule (Barceló et al., 2008). This quantification of contextual information helps formalize 
the intuitive idea that sensory processing depends on the task context, and it also suggests 
that the amount of information provided by an unexpected sensory distractor, error feedback, 
or a task switch cue, depends in part on the temporal and sensorimotor (task-related) 
uncertainty of those sensory stimuli for response selection (Barceló & Cooper, 2018a,b). 
 
 

Figure 3. Probabilístic model of cognitive control applied to modelling of 
the Madrid card sorting test (adapted from Nyhus & Barceló, 2009). 

	

Box 1. (Nyhus & Barceló, 2009) 

(1)	

(2)	

(3)	

(4)	
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Uncertainty, novelty, surprise and cognitive control 
The probabilistic approach to cognition (Chater and Oaksford, 2008) links the concept of 
cognitive control to the concepts of uncertainty, novelty and surprise (Baldi, 2005). Indeed, 
an old problem in Cognitive Neuroscience has been to find a definition of novelty or surprise 
that is both precise and widely accepted, which has generated a lot of conceptual confusion 
in the search for the neural generators of brain activations (Sokolov, 1963; Donchin, 1981). 
The new probabilistic models could offer a solution to this dilemma, helping to formalize the 
concepts of surprise and relevance as they are linked to the neural dynamics of exogenous 
and endogenous cognitive control (cf., Friston, 2005, 2010). The amount of surprise in any 
sensorimotor task can be measured as the difference between the probability distributions 
before and after the occurrence of each event (Barceló & Cooper, 2018a,b; Yu et al., 2009). 
Bayesian formalisms are more adequate than Information Theory for these dynamic trial by 
trial estimates (Baldi, 2005). The formal concept of surprise provides a simple formula to 
redefine the relevance of a stimulus (Baldi, 2005, p. 24). To the extent that attention is a 
rapid process modulated by exogenous (“bottom-up”) signals, we can compute surprise to 
detect disparities between these exogenous signals and any internal expectations or ("top-
down") prior hypotheses induced by the task context, or explicitly imposed by the task 
instructions (Baldi, 2005, p. 24; Friston, 2005). According to this, during task performance the 
brain is generating a representation of the probabilistic relationships between task events 
(i.e., the task context or “task-set”), in order to identify any highly informative surprising 
events. It is important to emphasize that these principles are very general, and are applicable 
to all tasks, from task switching (Figure 5b), to oddball paradigms (Barceló & Knight, 2007). 
 
The endogenous component P300 and the resolution of uncertainty 
To date few studies have tried to quantify the fluctuations in the level of surprise throughout 
the trials of a cognitive control task, in order to examine its influence on brain and behavioral 
responses (e.g., Barceló et al., 2008; Mars et al., 2008; Visalli et al., 2019). These studies 
have shown that EEG activity in a wide network of fronto-parietal cortical regions is a function 
of the amount of surprise associated not only with the stimuli of sensorimotor tasks, but also 
with their associated responses and further intermediate and latency-variable sensorimotor 
processes (cf., Brydges & Barceló, 2018). These results are relevant, for example, to 
understand the significance of the endogenous P300 brain potential, which has been related 
to the uncertainty generated by unexpected and surprising stimuli since its discovery (Sutton 
et al., 1965). New evidence suggests that the modulations of P300 measured from trial to 
trial (and perhaps also of other ERP components) depend on the probabilistic associations 
between task events. Therefore, probabilistic models could help explain part of the variability 
in brain and behavioral responses in cognitive tasks (Friston, 2005, 2010). 
 
An important advantage of probabilistic models of cognitive control is that they allow the 
interpretation of the behavioral results and brain activations obtained from different versions 
of the WCST to be integrated with results from other cognitive control tasks (cf., Miller, 1956). 
This approach provides a common interpretive framework for the control processes involved 
in responding to novel distractors in oddball-type tasks, to temporarily unexpected task 
switch cues, and to error feedback cues in the conventional WCST. All these situations 

Figure 4. Estimates of transmitted information between auditory task cues and associated “nogo” responses as a function of 
sensory entropy (0.25 y 0.50 bits for high and low tones, respectively), and the number of high order latent task rules that are 

actively maintained in working memory (adapted from Nyhus & Barceló, 2009). 
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require a fast and transient change in the high-order representations responsible for goal-
directed behavior. The mechanisms of task-set switching are fast and transitory, and seem to 
depend on the integrity of the prefrontal cortex (Miller, 2000; Shallice et al., 2008), as well as 
on a distributed anatomical network of cortical and subcortical structures necessary for the 
processing of novelty and surprise at different levels of neural representation. Even if this 
mechanism is activated only during a few milliseconds, it is surely accompanied by other 
additional processes, as lesion studies have suggested (Barceló & Knight, 2007; Shallice et 
al., 2008). Likewise, other slow negative ERP components of the evoked potential also 
accompany the P3a/novelty P3 responses to contextual cues that prompt a switch in tasks 
(Barceló et al., 2006; Kopp et al., 2006; Kieffaber & Hetrick, 2005). 
 

 
Figure 5. Formal modeling of contextual information. (a) Hierarchies of cognitive control. Information theory 
can be used to quantify the contextual dependencies characterizing cognitive control in simple target detection 
tasks, as well as in more complex tasks involving hypothetical high-order latent variables (here, Color and Form 
task rules). Mean probability of task events (i.e., P = 0.2 for gray non-targets, P= 0.8 for colored targets) cannot 
fully convey the complex contextual contingencies driving behavioral and brain responses in studies on cognition. 
Information theory metrics such as stimulus entropy, and information transmission between sets of task stimuli (S) 
and responses (R) –both at lower [I(si, rj)] and higher [Q(rj |si)] ordered levels in the neural hierarchy of control 
(Koechlin and Summerfield, 2007), offer better ways to parametrize the numerous sources of contextual 
information that modulate behavioral and brain responses in studies of cognition. (b) Time dynamics of 
sensorimotor loops. Examples of three cognitive tasks where the stimulus context was kept constant while 
manipulating motor and sensorimotor demands (cf., Barcelo & Cooper, 2018a). Task 1 (“oddball task”) involved 
detection of visual targets using one-forced choice responses (“press a button to red gratings”); Task 2 (“go/nogo 
task”) required two-forced choice responses (“press button 1 for red gratings and button 2 for blue gratings”); In 
Task 3 (“switch task”) infrequent vertical and horizontal gray gratings instructed participants to switch and repeat 
the active task rule (i.e., “Color” vs. “spatial Frequency”), respectively. (c) Quantifying contextual information. 
Transmitted sensorimotor (S-R) information was modeled at two levels in the hypothetical neural hierarchy shown 
in Fig. 1a, and plotted as a function of mean stimulus entropy. This simple model predicted maximal task 
differences in contextual information among the temporarily surprising non-target stimuli, and no differences in 
task-averaged transmitted information for the temporarily predictable target stimuli. (d) Context updating: Scalp-
recorded “context P3” responses to the surprising non-target “nogo” stimuli (300-450 ms) captured the graded 
differences in cognitive demands across all tasks, as predicted by the model in Fig. 1c. The largest “context P3” 
intensities were observed in the task with the largest sensorimotor entropy, a condition conveying maximal 
contextual uncertainty about upcoming actions. Similar context-sensitive brain responses have also been reported 
with auditory and somatosensory stimulation (Donchin, 1981). (e) Context learning: The intensity of “target P3” 
responses to temporarily predictable target “go” stimuli was slightly larger in the task conveying less sensorimotor 
entropy, whose contextual information could be quickly learned.  These findings pointed to a common fronto-
parietal cortical network for cognitive control showing different functional dynamics during two temporarily distinct 
context updating and context learning stages of processing (cf., Barcelo & Cooper, 2018b). 
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1.2. General Objectives 
Recent research suggests that there is a conceptual and methodological confusion regarding 
the measurement of the endogenous P300 component recorded in simple target detection 
tasks with homogenous stimulus-response mappings (i.e., oddball tasks). This conceptual 
and methodological confusion is partly due to the absence of a numerical quantification of 
the amount of contextual information being updated, which is assumed to modulate this 
component according to the widely accepted “context-updating” hypothesis (Donchin, 1981; 
Donchin & Coles, 1988; Sutton et al., 1965). Another related problem is the existence of not 
just one, but a multiplicity of P300-like sub-components differently linked with proactive 
(anticipatory) and reactive control of target detection (Barceló & Cooper, 2018a, b). Even 
during reactive target detection, target P3 can be functionally decomposed into stimulus-
locked, response-locked and latency variable sub-components (Brydges & Barceló, 2018). 
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This methodological confusion has prevented reaching a consensus on the functional 
significance of this and other related endogenous ERP components, and on their role in 
human information processing and cognition (Barceló & Cooper, 2018b). 

  
Our general starting hypothesis is that context-sensitive cognition can be described and 
explained by formally quantifying and modeling contextual information using the metrics of 
information theory and Bayesian probability theory (Barceló & Cooper, 2018b). Likewise, this 
formal approach can allow us to model more accurately brain activity, since the brain also 
seems to follow probabilistic laws to represent the dynamic interaction between exogenous 
(sensory input) and endogenous control processes (prior knowledge, goals and expectations; 
cf., Baldi, 2005; Doya et al., 2007; Koechlin and Summerfield, 2007; Yu and Dayan, 2005). In 
this respect, this proposal is consistent with the theory that the brain has evolved to infer and 
represent the causes of sensory stimulation, minimizing prediction errors in perceptual 
inference, learning and decision-making (Friston, 2005, 2010). These prediction errors can 
be quantified in terms of information surprise represented at both low- and high-order levels 
across the putative hierarchy of neurocognitive processes in our brains (see Figure 5a). 

 
1.3. Specific Objectives 
The purpose of this project is to complete the mathematical formalization of a computational 
model of cognitive control developed in our earlier MICINN projects (refs. SEJ2007-61728 
and PSI2013-44760-R). We also want to test the predictive validity of the model with new 
behavioral and electroencephalographic data from healthy young and old people obtained 
using two classic tasks of cognitive control (namely, an adaptation of the WCST and a task-
switching paradigm). This general objective can be broken down into four specific objectives: 

 
Objective 1. To complete a formal model of the WCST from a predictive processing account, 
using Information Theory and Bayesian probability metrics (Barceló et al., 2008; Parr et al., 
2019) in line with recent studies (Adrover-Roig & Barceló, 2010; Barceló & Cooper, 2018). In 
this modeling work, those parameters known to mostly affect the behavioral and cerebral 
indexes of executive attention, such as the probability of target and distracting stimuli, inter-
stimulus and inter-trial intervals, etc., will be of particular interest. This objective will be 
achieved through the development of Work Package 1 (see Work Plan). 

 
Objective 2. To validate the generalizability of the model to other cognitive control tasks, and 
in particular, we will extend the modeling to a task-switching paradigm used in our recent 
work (Barceló & Cooper, 2018). The same parameters as with our WCST adaptation will be 
modeled for the task-switching paradigm, and especially those known to mostly affect the 
behavioral and brain indexes of executive control (i.e., inter-stimulus and inter-trial intervals). 
The fulfillment of this objective will be guaranteed through Work Package 2 (see Work Plan). 

 
Objective 3. Examine the validity of the proposed model in new data already recorded but not 
yet published. The new behavioral and EEG data correspond to two behavioral paradigms of 
cognitive control (MCST, task-switching), and comprise two large samples of young adults 
(20-35 years; N = 60) and healthy older (60-85 years; N = 60), who have been previously 
classified according to their score (“high” or “low”) in a battery of neuropsychological tests of 
cognitive control (cf., Adrover-Roig & Barceló, 2010). This objective will involve the modeling 
of both behavioral and electroencephalographic data, and will allow us to advance in our 
work of functional segregation of the fronto-parietal network involved in cognitive control 
(Periáñez & Barceló, 2009; Brydges & Barceló, 2018). This objective is relevant because it 
will aim the modeling of temporal EEG dynamics in the WCST and during task switching. The 
fulfillment of this objective will be pursued through Work Packages 3 and 4 for the modified 
MCST and task-switching protocols, respectively (see Work Plan). 

 
Objective 4. To validate the predictive and diagnostic capacity of the model in people with 
brain damage who had our task-switching protocol administered in previous collaborative 
work at the University of Cambridge university. The explanatory and predictive value of the 
model will also be achieved by comparing the behavioral results of N = 33 patients with 
lesions in the prefrontal cortex with a sample of controls (N = 24). The fulfillment of this 
objective will be guaranteed through the development of Work Package 5 (see Work Plan). 


